A study on milk yield persistency using the best prediction and random regression methodologies in Iranian Holstein dairy cows
Contenido principal del artículo
Resumen
The data consisted of 435,390 test day milk yield records of primiparous cows in 659 herds calving from 2001 to 2011. Evaluation of persistency using best prediction methodology
showed that the phenotypic correlation between this persistency measure and total milk yield was 0.450, while the best reference
day, the heritability of persistency and 305 d milk yield estimated by this method, were day 130, 0.11 and 0.305, respectively. Heritabilities of milk yield persistency for Pers1 predicted breeding value from 106-205 days in milk, subtracted from predicted breeding value from 6-105 days in milk) and Pers2 (predicted breeding value from 206-305 days in milk subtracted from predicted breeding value from 6-105 days in milk) calculated by Random regression methodology were 0.09 to 0.185, respectively. The results showed that the best prediction method is powerful and accurate in measuring persistency. However, due to the flexibility of random regression methodology, some measures of persistency using this method can have higher heritability and genetic correlation with total milk yield compared to the best prediction methodology. It can therefore be concluded that calculation of persistency using random regression methodology is preferred to the best prediction method.
Key words: additive genetic effects, lactation curve, persistency,
total milk yield
showed that the phenotypic correlation between this persistency measure and total milk yield was 0.450, while the best reference
day, the heritability of persistency and 305 d milk yield estimated by this method, were day 130, 0.11 and 0.305, respectively. Heritabilities of milk yield persistency for Pers1 predicted breeding value from 106-205 days in milk, subtracted from predicted breeding value from 6-105 days in milk) and Pers2 (predicted breeding value from 206-305 days in milk subtracted from predicted breeding value from 6-105 days in milk) calculated by Random regression methodology were 0.09 to 0.185, respectively. The results showed that the best prediction method is powerful and accurate in measuring persistency. However, due to the flexibility of random regression methodology, some measures of persistency using this method can have higher heritability and genetic correlation with total milk yield compared to the best prediction methodology. It can therefore be concluded that calculation of persistency using random regression methodology is preferred to the best prediction method.
Key words: additive genetic effects, lactation curve, persistency,
total milk yield
Detalles del artículo
Cómo citar
Elahi Torshizi, M., & Hosseinpour Mashhadi, M. (2018). A study on milk yield persistency using the best prediction and random regression methodologies in Iranian Holstein dairy cows. Cuban Journal of Agricultural Science, 52(2). Recuperado a partir de https://mail.cjascience.com/index.php/CJAS/article/view/794
Sección
Biomatemáticas
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).