Integral evaluation of indicators in models of parametric and non-parametric analysis of variance. Use of the categorical principal component
Contenido principal del artículo
Resumen
In order to establish possible relations among statistical indicators in models of parametric and non-parametric analysis of variance, belonging to completely randomized and random block experimental designs, the categorical principal component analysis was used because they are quantitative and qualitative.
The models of analysis of variance of simple classification, with 16 experiments, were selected, as well as those of double classification with five experiments. An amount of 100 discrete and categorical variables were analyzed. A matrix of data was designed using the indicators of completely randomized designs and the test of Kruskal-Wallis, which is its non-parametric homologue, the model of random blocks with its non-parametric homologue, and the test of Friedman. The categorical principal component analysis showed adequate reliability and a variability percentage explained with 0.94. The indicators with more importance in the first dimension are related to probability of type I error and power, showing absolute values close to one and allowing to determine their contribution in this study. The results evidenced the existing relations among the analyzed statistical indicators, from the high degree of positive correlation over 0.90 among the values of probability of type I error in the F test of Fisher (with and without transformation) and its non-parametric homologue test, as well as the high negative correlations, existing between around 0.8 and 0.93 of them with values of power (with or without data transformation). It is necessary to continue the analysis for different data distributions and sample sizes.
Key words: statistical indicators, models of simple and double
variance analysis, categorical principal component analysis
The models of analysis of variance of simple classification, with 16 experiments, were selected, as well as those of double classification with five experiments. An amount of 100 discrete and categorical variables were analyzed. A matrix of data was designed using the indicators of completely randomized designs and the test of Kruskal-Wallis, which is its non-parametric homologue, the model of random blocks with its non-parametric homologue, and the test of Friedman. The categorical principal component analysis showed adequate reliability and a variability percentage explained with 0.94. The indicators with more importance in the first dimension are related to probability of type I error and power, showing absolute values close to one and allowing to determine their contribution in this study. The results evidenced the existing relations among the analyzed statistical indicators, from the high degree of positive correlation over 0.90 among the values of probability of type I error in the F test of Fisher (with and without transformation) and its non-parametric homologue test, as well as the high negative correlations, existing between around 0.8 and 0.93 of them with values of power (with or without data transformation). It is necessary to continue the analysis for different data distributions and sample sizes.
Key words: statistical indicators, models of simple and double
variance analysis, categorical principal component analysis
Detalles del artículo
Cómo citar
Herrera, M., Guerra, C. W., & Medina, Y. (2016). Integral evaluation of indicators in models of parametric and non-parametric analysis of variance. Use of the categorical principal component. Cuban Journal of Agricultural Science, 50(2). Recuperado a partir de https://mail.cjascience.com/index.php/CJAS/article/view/608
Sección
Biomatemáticas
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).