Bioclimatic scenarios for sheep production systems in Ciego de Ávila, Cuba

Main Article Content

J.O. Serrano
J. Martínez-Melo
Grethel L. Sieiro-Miranda
N. Fonseca
Ioan Rodríguez Santana
Aliana López Mayea
F. Matos Pupo

Abstract

This paper interprets the bioclimatic scenarios for sheep production systems in Ciego de Ávila for 2030, 2050 and 2100 in the scenarios called representative concentration pathways 2.6, 4.5 and 8.5. Data of accumulated ambient temperature and average relative humidity from the PRECIS-CARIBE regional model were monthly used for this purpose. The interpretation was based on scientific literature on the behavior of sheep under heat stress. The results showed a future environment with favorable meteorological conditions for the development of heat stress in sheep. Temperatures will range from 28.5 to 39.6 °C, depending on the type of scenario and the year. Relative humidity will reach values ​​between 60.5 and 85%, which will generate temperature and relative humidity indices of 89.5 to 95.2 u. The optimal conditions for sheep to be in thermal welfare are lower than the scenarios for 2030, 2050 and 2100. The presence of trees and the development of silvopastoral systems constitute an alternative to mitigate adverse climatic conditions. Bioclimatic scenarios provide information for future planning and management of sheep rearing, selection of actions and care that promote the application of a climate-smart agriculture from the climatic point of view, which contributes to the sustainable production of these animals.

Article Details

How to Cite
Serrano, J., Martínez-Melo, J., Sieiro-Miranda, G. L., Fonseca, N., Rodríguez Santana, I., López Mayea, A., & Matos Pupo, F. (2024). Bioclimatic scenarios for sheep production systems in Ciego de Ávila, Cuba. Cuban Journal of Agricultural Science, 58, https://cu-id.com/1996/v58e14. Retrieved from https://mail.cjascience.com/index.php/CJAS/article/view/1149
Section
Animal Science

References

Aengwanich, W., Kongbuntad, W. & Boonsorn, T. 2011. Effects of shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle. International Journal of Biometeorology, 55(5): 741-748, ISSN: 1432-1254. http://doi.org/10.1007/s00484-010-0389-y.

Barragán-Hernández, W.A., Mahecha-Ledesma, L. & Cajas-Girón, Y.S. 2015. Variables fisiológicas-metabólicas de estrés calórico en vacas bajo silvopastoreo y pradera sin árboles. Agronomía Mesoamericana, 26(2): 211-223, ISSN: 2215-3608. http://dx.doi.org/10.15517/am.v26i2.19277.

Casanova-Pérez, L., Martínez-Dávila, J.P. & García-Alonso, F. 2019. Comunicación del cambio climático y generación de capacidades adaptativas entre los agricultores del trópico subhúmedo. Revista mexicana de ciencias agrícolas, 10(7): 1627-1639, ISSN: 2007-9230. https://doi.org/10.29312/remexca.v10i7.1795.

CEPAL, N. 2018. Efectos del cambio climático en la costa de América Latina y el Caribe: reconstrucción histórica y proyecciones del efecto del cambio climático sobre el oleaje en la costa de Cuba. Comisión Económica para América Latina y el Caribe.

CEPAL, N. & UNICEF. 2013. Desarrollo sostenible en América Latina y el Caribe. Seguimiento de la agenda de las Naciones Unidas para el desarrollo post-2015 y Río+ 20.

De la Rosa, L.A., De la Rosa, Y.F., Hernández, D.B., Lemes, M.M., Beltrán, M.G., Socarras, Y.P. & Flores, F.A.C. 2015. Aproximación a una mirada sociodemográfica de la provincia de Ciego de Ávila. Novedades en Población, 10(19): 66-74, ISSN: 1817-4078.

Ferguson, D.M., Fisher, A., Colditz, I.G. & Lee, C. 2017. Future challenges and opportunities in sheep welfare. En: Advances in Sheep Welfare, (ed)^(eds). Elsevier, 285-293 pp.

Habeeb, A.A., Gad, A.E. & Atta, M.A. 2018. Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. International Journal of Biotechnology and Recent Advances, 1(1): 35-50, ISSN: 2639-4529. https://doi.org/10.18689/IJBR-1000107.

Hernández–Mansilla, A., Sorí-Gómez, R. & Benedico-Rodríguez, O. 2017. Escenarios bioclimáticos de tizón tardío [Phytophthora infestans (Mont.) De Bary] en Ciego de Ávila, Cuba. Revista Latinoamericana de la Papa, 21(2): 1-14, ISSN: 1853-4961. https://doi.org/10.37066/ralap.v21i2.275

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. https://epic.awi.de/id/eprint/37530/1/IPCC_AR5_SYR_Final.pdf.

Jones, J.J., Stephenson, T.S., Taylor, M.A. & Campbell, J.D. 2016. Statistical downscaling of North Atlantic tropical cyclone frequency and the amplified role of the Caribbean low‐level jet in a warmer climate. Journal of Geophysical Research: Atmospheres, 121(8): 3741-3758, ISSN: 2169-8996. https://doi.org/10.1002/2015JD024342.

Karmalkar, A.V., Taylor, M.A., Campbell, J., Stephenson, T., New, M., Centella, A., Benzanilla, A. & Charlery, J. 2013. A review of observed and projected changes in climate for the islands in the Caribbean. Atmósfera, 26(2): 283-309, ISSN: 2395-8812. https://doi.org/10.1016/S0187-6236(13)71076-2.

Lins, J.G.G., Rodrigues, S.D., Albuquerque, A.C.A. & de Souza Marques, A.V.M. 2021. Role of integrated crop-livestock system on amelioration of heat stress on crossbred Brazilian sheep in semiarid region of northeastern Brazil. Small Ruminant Research, 204: 106513, ISSN: 0921-4488. https://doi.org/10.1016/j.smallrumres.2021.106513.

López, R., Pinto-Santini, L., Perozo, D., Pineda, J., Oliveros, I., Chacón, T., Rossini, M. & de Álvarez, L.R. 2015. Confort térmico y crecimiento de corderas West African pastoreando con y sin acceso a sombra artificial. Archivos de zootecnia, 64(246): 139-146, ISSN: 1885-4494. https://doi.org/10.21071/az.v64i246.388.

López-Vigoa, O., Sánchez-Santana, T., Iglesias-Gómez, J.M., Lamela-López, L., Soca-Pérez, M., Arece-García, J.& Milera-Rodríguez, M.d.l.C. 2017. Los sistemas silvopastoriles como alternativa para la producción animal sostenible en el contexto actual de la ganadería tropical. Pastos y Forrajes, 40(2): 83-95, ISSN: 2078-8452.

Macías-Cruz, U., López-Baca, M., Vicente, R., Mejía, A., Álvarez, F., Correa-Calderón, A., Meza-Herrera, C., Mellado, M., Guerra-Liera, J. & Avendaño-Reyes, L. 2016. Effects of seasonal ambient heat stress (spring vs. summer) on physiological and metabolic variables in hair sheep located in an arid region. International Journal of Biometeorology, 60(8): 1279-1286, ISSN: 1432-1254. https://doi.org/10.1007/s00484-015-1123-6.

Marai, I., El-Darawany, A., Fadiel, A. & Abdel-Hafez, M. 2007. Physiological traits as affected by heat stress in sheep - a review. Small Ruminant Research, 71(1-3): 1-12, ISSN: 0921-4488. https://doi.org/10.1016/j.smallrumres.2006.10.003.

Neves, M.L.M.W., de Azevedo, M., da Costa, L.A.B., Guim, A., Leite, A.M. & Chagas, J.C. 2009. Níveis críticos do índice de conforto térmico para ovinos da raça Santa Inês criados a pasto no agreste do Estado de Pernambuco. Acta Scientiarum: Animal Sciences, 31(2): 169-175, ISSN: 1807-8672. https://doi.org/10.4025/actascianimsci.v31i2.3766.

Nicholls, C.I. & Altieri, M.A. 2019. Bases agroecológicas para la adaptación de la agricultura al cambio climático. Cuadernos de Investigación UNED, 11(1): 55-61, ISSN: 1659-441X.

Oliveira, F.A.d., Turco, S.H., de Aaraújo, G.G., Clemente, C.A., Voltolini, T.V. & Garrido, M.S. 2013. Comportamento de ovinos da raça Santa Inês em ambientes com e sem disponibilidade de sombra. Revista Brasileira de Engenharia Agrícola e Ambiental, 17: 346-351, ISSN: 1807-1929. https://doi.org/10.1590/S1415-43662013000300015.

ONEI, Oficina Nacional de Estadística e Información. 2021. Anuario estadístico de Cuba. Existencia de ganado menor. Distribución de la tierra del país y su Utilización por provincias, en Agricultura, Ganadería, Silvicultura y Pesca. http://www.onei.gob.cu/node/16275.

Pereira, A.M., Bonifácio, A.M.R., dos Santos, C.V., da Silva, I.A., e Silva, T.P.D., Sousa, K.R.S., Gottardi, F.P., Marques, C.A.T. & da Costa Torreão, J.N. 2014. Thermoregulatory traits of native sheep in pregnancy and supplemented in grazing system. Journal of Agricultural Science, 6(9): 113-119, ISSN: 1916-9760. http://dx.doi.org/10.5539/jas.v6n9p113.

Pérez, Y.V., Mansilla, A.A.H., Gómez, R.S., Mayea, A.L., Montenegro, R.V. & Sánchez, J.D.A. 2018. Fitófagos de banano y plátano bajo condiciones de cambio climático en Cuba. Revista de Ciencias Ambientales, 52(2): 141-157, ISSN: 2215-3896. http://dx.doi.org/10.15359/rca.52-2.8.

Reyes, J., Herrera, M., Marquina, J. R., Enjoy, D. D., & Pinto-Santini, L. 2018. Ambiente físico y respuestas fisiológicas de ovinos bajo sombra en horas de máxima radiación. Archivos de zootecnia, 67(259): 318-323, ISSN: 1885-4494.

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N. & Rafai, P. 2011. RCP-8.5- A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2): 33-57, ISSN: 1573-1480. https://doi.org/10.1007/s10584-011-0149-y.

Rodríguez De Luque, J.J., González-Rodríguez, C.E., Gourdji, S., Mason-D’Croz, D., Obando-Bonilla, D., Mesa-Diez, J. & Prager, S.D. 2016. Impactos socioeconómicos del cambio climático en América Latina y el Caribe: 2020-2045. Cuadernos de Desarrollo Rural, 13(78): 11-34, ISSN: 2215-7727. https://doi.org/10.11144/Javeriana.cdri3-78.iscc.

Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T. & Woznicki, S.A. 2017. Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16: 145-163, ISSN: 2212-0963. http://dx.doi.org/10.1016/j.crm.2017.02.001.

Romero, R.D., Pardo, A.M., Montaldo, H.H., Rodríguez, A.D. & Cerón, J.H. 2013. Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stress. Tropical Animal Health and Production, 45(8): 1691-1696, ISSN: 1573-7438. https://doi.org/10.1007/s11250-013-0416-1.

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N.W., Clark, D.B., Dankers, R., Eisner, S., Fekete, B.M. & Colón-González, F.J. 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9): 3245-3250, ISSN: 1091-6490. www.pnas.org/cgi/doi/10.1073/pnas.1222460110.

Seixas, L., de Melo, C.B., Tanure, C.B., Peripolli, V. & McManus, C. 2017. Heat tolerance in Brazilian hair sheep. Asian-Australasian Journal of Animal Sciences, 30(4): 593, ISSN: 1976-5517. https://doi.org/10.5713/ajas.16.0191.

Sejian, V., Kumar, D., Gaughan, J.B. & Naqvi, S.M. 2017. Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment. Journal of Veterinary Behavior, 17: 6-13, ISSN: 1558-7878. https://doi.org/10.1016/j.jveb.2016.10.009.

Solórzano-Montilla, J., Pinto-Santini, L., Camacaro-Calvete, S., Vargas-Guzmán, D. & Ríos-de Álvarez, L. 2018. Effect of the presence of shade in sheep grazing areas. 2. Animal activity. Pastos y Forrajes, 41(1): 41-49, ISSN: 2078-8452.

Sorí-Gómez, R., Hernández-Mansilla, A.A., López-Mayea, A., Benedico-Rodríguez, O. Córdova-García, O.L & Ávila-Espinosa, M. 2014. Pronóstico climático mensual de la temperatura en Ciego de Ávila. Cuba.Ciencias de la Tierra y el Espacio, 15(1): 23-35, ISSN: 1729-3790.

Sousa, L., Maurício, R., Paciullo, D., Silveira, S., Ribeiro, R., Calsavara, L., Moreira, G. 2015. Forage intake, feeding behavior and bio-climatological indices of pasture grass, under the influence of trees, in a silvopastoral system. Tropical Grasslands-Forrajes Tropicales, 3(3): 129-141, ISSN: 2346-3775. https://doi.org/10.17138/tgft(3)129-141.

Srikandakumar, A., Johnson, E. & Mahgoub, O. 2003. Effect of heat stress on respiratory rate, rectal temperature and blood chemistry in Omani and Australian Merino sheep. Small Ruminant Research, 49(2): 193-198, ISSN: 0921-4488. https://doi.org/10.1016/S0921-4488(03)00097-X.

Thomson, A.M., Calvin, K.V., Smith, S.J., Kyle, G.P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M.A. & Clarke, L.E. 2011. RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1): 77-94, ISSN: 1573-1480. https://doi.org/10.1007/s10584-011-0151-4.

Van Vuuren, D., Stehfest, E., den Elzen, M., Kram, T., van Vliet, J., Deetman, S., Isaac, M., Goldewijk, K., Hof, A., Beltran, A.M., Oostenrijk, R. &. van Ruijven, B. 2011. RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change, 109: 95-116, ISSN: 1573-1480. https://doi.org/10.1007/s10584-011-0152-3.

Vera-Herrera, I.Y., Ortega-Cerrilla, M.E., Herrera-Haro, J.G. & Huerta-Jiménez, M. 2019. Bienestar en ovinos y su evaluación. AgroProductividad, 12(9): 67-73, ISSN: 2594-0252.

Vieira, F.M.C., Pilatti, J.A., Czekoski, Z.M.W., Fonsêca, V.F., Herbut, P., Angrecka, S., de Souza Vismara, E., de Paulo Macedo, V., dos Santos, M.C.R. & Paśmionka, I. 2021. Effect of the Silvopastoral System on the Thermal Comfort of Lambs in a Subtropical Climate: A Preliminary Study. Agriculture, 11(8): 790, ISSN: 2077-0472. https://doi.org/10.3390/agriculture11080790.

Most read articles by the same author(s)