In vitro effect of trees forages inclusion from the amazonian piedmont in supplements for cattle

Main Article Content

A.R. Riascos Vallejos
R. Rodríguez Hernández
Lina Y. Quintero
Diana P. Vargas

Abstract

The in vitro effects of the inclusion of three native species and adapted to the Amazonian piedmont on supplements for cattle were evaluated. A total of seven treatments were constituted: T1) control (concentrate without trees), T2 and T3 (20 and 40 % of Trichantera gigantea inclusion, respectively), T4 and T5 (20 and 40 % of Piptocoma discolor inclusion, respectively), and T6 and T7 (20 and 40 % of Hibiscus rosa-sinensis inclusion, respectively). The in vitro technique of gas production was applied and the in vitro degradability of the dry matter and organic matter was determined. A completely randomized design with four repetitions per treatment was used. The higher gas production corresponded to the control (T1), although did not showed differences with respect to the treatment with 40 % Piptocoma (T5) (p=0.016). The lower values of accumulated gas production were obtained when including 20 % de Piptocoma (T4), which not differ of the treatments T2, T5, T6 and T7. The highest values of in vitro degradability of the dry matter corresponded to the control (T1) and the supplements with 20 % of Trichantera inclusion (T2) and 20 and 40 % of hibiscus (T6 and T7) (p<0.008). The lower degradability value was for T5. The highest figures of in vitro digestibility of organic matter corresponded to the control and to the supplement with 20 % of Ttrichantera (T2) and with hibiscus (T6 and T7) (p<0.0001). The rest of treatments had the fallowing performance: T4 > T3 > T5. It is concluded that the inclusion in the concentrate of 20 % of T. gigantea and 20 and 40 % of H. rosa-sinensis did not affected the DM and OM degradability of the supplement and improved the nutrition partition to higher deposition of the fermented matter as microbial biomass, when decreasing the gas production with respect to the concentrate without trees.

Article Details

How to Cite
Riascos Vallejos, A., Rodríguez Hernández, R., Quintero, L. Y., & Vargas, D. P. (2024). In vitro effect of trees forages inclusion from the amazonian piedmont in supplements for cattle. Cuban Journal of Agricultural Science, 58, https://cu-id.com/1996/v58e09. Retrieved from https://mail.cjascience.com/index.php/CJAS/article/view/1144
Section
Animal Science

References

Amanzougarene, Z. & Fondevila, M. 2020. Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals, 10: 1935, ISSN: 2076-2615. http://dx.doi.org/10.3390/ani10101935

AOAC. Official methods of analysis of AOAC. 2016. International. 20. ed., Rockville MD: AOAC International, Latimer, George W. Jr. ISBN: 9780935584875. http://www.directtextbook.com/isbn/9780935584875. [Consulted: Octubre 15, 2023]

Arjona-Alcocer V.A., Aguilar-Pérez C.F., Ku-Vera J.C., Ramírez-Avilés, L. & Solorio-Sánchez, F.J. 2020. Influence of energy supplementation on dietary nitrogen utilization and milk production in cows fed foliage of Leucaena leucocephala. Tropical Animal Health and Production, 52(5): 2319–2325, ISSN: 1573-7438. https://doi.org/10.1007/s11250-020-02254-1

Baffa, D.F., Oliveira, T.S., Fernandes, A.M., Camilo, M.G., Silva, I.N., Meirelles Júnior, J.R. & Aniceto, E.S. 2023. Evaluation of associative effects of in vitro gas production and fermentation profile caused by variation in ruminant diet constituents. Methane, 2: 344–360, ISSN: 2674-0389. https://doi.org/10.3390/methane2030023

Blanco-Wells, G. & Günther, M.G. 2019. On crises, ecologies, and transitions: Reflections on latinamerican social theory regarding global environmental change. Revista Colombiana de Sociología, 42(1): 19–40, ISSN: 0120-159X. https://doi.org/10.15446/rcs.v42n1.73190

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M. & Robledo, C.W. 2012. InfoStat, versión 2012. Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Díaz Echeverría, V.F., Sánchez Ramos, A., Albores-Moreno, S., Lara Pérez, L.A., Valencia-Salazar, S.S., Ku-Vera, J.C. & Alayon-Gamboa, J.A. 2023. Valoración nutricional y fermentación in vitro de mezclas de follaje de árboles con harina de yuca en dietas para borregos. Acta Universitaria, 33: e3558, ISSN: 2007-962. http://doi.org/10.15174.au.2023.3558

Duncan, D. B. 1955. Multiple Range and Multiple F Tests. Biometrics, 11(1): 1–42, ISSN: 0006-341X. http://doi.org/10.2307/3001478

Luna, M.A.A. 2021. Digestibilidad in vitro de dietas para ovinos de engorda suplementadas con follaje de Tithonia diversifolia. Tesis de Maestría. Tecnológico Nacional de México, Instituto Tecnológico de Tizimín, 76 pp

Makkar, H.P.S. 2000. Applications of the in vitro gas method in the evaluation of feed resources, and enhancement of nutritional value of tannin-rich tree/browse leaves and agro-industrial by-products. Proceeding Meeting IAEA Technical Cooperation Regional AFRA Project. Cairo, Egypt, pp. 23-40.

National Research Council (NRC). 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press, Washington DC.

Pérez-Can, G.E., Tzec-Gamboa, M., Albores-Moreno, S., Sanginés-García, J., Aguilar-Urquizo, E., Chay-Canul, A., Canul-Solis, J., Muñoz-Gonzalez, J., Díaz-Echeverria, V. & Piñeiro-Vázquez, A.T. 2020. Degradabilidad y producción de metano in vitro del follaje de árboles y arbustos con potencial en la nutrición de rumiantes. Acta Universitaria, 30: e2840, 1-13, ISSN: 2007-9621. https://doi.org/10.15174/au.2020.2840

Riascos-Vallejos, A.R., Reyes, J.J. & Aguirre, L.A. 2020. Nutritional characterization of trees from the Amazonian piedmont, Putumayo department, Colombia. Cuban Journal of Agricultural Science, 54(2): 257-265, ISSN: 2079-3480

Riascos-Vallejos, A.R., Vargas-Muñoz, D.P., Narvaez-Herrera, J.P. & Quintero-Quintero, L.Y. 2024. Pellets de melaza como activadores ruminales en bovinos en la llanura amazónica del departamento del Putumayo. Livestock Research for Rural Development, 36: Article #7, ISSN: 0121-3784. http://www.lrrd.org/lrrd36/1/3607jupa.html

Ribeiro da Silva, T., Granja Salcedo, Y.T., Alvarado Vesga, D. & Duarte Messana, J. 2021. Fuentes Proteicas De Baja Degradación Ruminal Y Su Efecto En La Producción De Metano En Bovinos De Carne. Revista Facultad de Ciencias Agropecuarias -FAGROPEC, 12(2): 232–240, ISSN: 2539-178X. https://doi.org/10.47847/fagropec.v12n2a5

Ruiz, J.F. & Melo, J.Y. 2022. Informe de Predicción Climática a corto, mediano y largo plazo en Colombia. Grupo de Modelamiento de Tiempo y Clima, Subdirección de Meteorología – IDEAM, 10 pp. http://www.ideam.gov.co/documents/21021/120966722/01_Predicci%C3%B3n_Clim%C3%A1tica_Feb_Mar_Abr/7c6e8635-2575-4ea0-b7b0-2bc54256b680?version=1.0 [Consulted: September 25, 2023]

Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. & France, J. 1994. Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48: 185-197, ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(94)90171-6

Van Soest, P.J., Robertson, J.B. & Lewis, B.A. 1991. Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10): 3583–3597, ISSN: 1525-3198. https://doi.org/10.3168/jds.S0022-0302(91)78551-2