Dietary inclusion of a lipase enzyme in the bioproductive indicators of laying pullets

Main Article Content

S. N. Zúñiga
J. A. Vaca
Y. Martínez
R. Rodríguez

Abstract

A total of 700 one-day-old Dekalb White® birds were randomized into two treatments and seven repetitions to evaluate the inclusion of 0.01 % of a lipase enzyme with an energy contribution of 0.42 MJ/kg during five productive stages: starter 1 (1- 3 weeks) starter 2 (4-6 weeks), grower (7-10 weeks), development (11-15) and pre-lay (16-17). The inclusion of lipase decreased the cost of the diets by 12.21 USD/t in relation to the control treatment. During weeks 1-3, 7-10 and 16-17 no notable changes (P>0.05) were recorded for body weight, feed intake, feed conversion ratio and viability. However, in weeks 4-6, the inclusion of lipase improved (P<0.05) body weight (408.96 vs 449.36 g) and feed conversion ratio (2.32 vs 1.95). However, this treatment (lipase) increased (P<0.05) feed intake and feed conversion ratio in weeks 11-15 (3.24 vs 4.11). In the global period (1-17 weeks), no productive indicator of the pullets changed (P>0.05) due to the effect of the experimental diets. It is recommended to include the lipase enzyme (Lipase AN6) in hypocaloric diets (-0.42 MJ/kg) to reduce its cost, without affecting the bioproductive indicators of laying pullets.

Article Details

How to Cite
Zúñiga, S. N., Vaca, J. A., Martínez, Y., & Rodríguez, R. (2024). Dietary inclusion of a lipase enzyme in the bioproductive indicators of laying pullets. Cuban Journal of Agricultural Science, 58, https://cu-id.com/1996/v58e07. Retrieved from https://mail.cjascience.com/index.php/CJAS/article/view/1138
Section
Animal Science

References

Aftab, U. & Bedford, M. R. 2018. The use of NSP enzymes in poultry nutrition: myths and realities. World's Poultry Science Journal, 74(2): 277-286. ISSN: 1743-4777. https://doi.org/10.1017/S0043933918000272

Al-Marzooqi, W. & Leeson, S. 1999. Evaluation of dietary supplements of lipase, detergent, and crude porcine pancreas on fat utilization by young broiler chicks. Poultry Science, 78(11): 1561-1566. ISSN: 0032-5791. https://doi.org/10.1093/ps/78.11.1561

Al-Marzooqi, W. & Leeson, S. 2000. Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poultry Science, 79(7): 956-960. ISSN: 1350-4177. https://doi.org/10.1093/ps/79.7.7.956

Asensio, X., Abdelli, N., Piedrafita, J., Soler, M.D. & Barroeta, A.C. 2020. Effect of fibrous diet and vitamin C inclusion on uniformity, carcass traits, skeletal strength, and behavior of broiler breeder pullets. Poultry Science, 99(5): 2633-2644, ISSN: 1350-4177. https://doi.org/10.1016/j.psj.2020.01.015

Bakare, A.G., Zindove, T.J., Iji, P.A., Stamatopoulos, K. & Cowieson, A.J. 2021. A review of limitations to using cassava meal in poultry diets and the potential role of exogenous microbial enzymes. Tropical Animal Health and Production, 53(4): 1-13, ISSN: 1573-7438. https://doi.org/10.1007/s11250-021-02853-6

Barzegar, S., Wu, S.B., Choct, M. & Swick, R.A. 2020. Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry Science, 99(1): 487-498, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez554

Castro, F.L. & Kim, W.K. 2021. Exogenous lipase supplementation to low-energy, low-protein, and low–amino acid diets for broiler chickens from one to 42 d. Journal of Applied Poultry Research, 30(1):100–117, ISSN: 1537-0437. https://doi.org/10.1016/j.japr.2020.100117

Cavalcante, F.T.T., Neto, F.S., de Aguiar Falcão, I.R., da Silva Souza, J.E., de Moura Junior, L.S., da Silva Sousa, P. & dos Santos, J.C. 2021. Opportunities for improving biodiesel production via lipase catalysis. Fuel, 288: 119577, ISSN: 0016-2361. https://doi.org/10.1016/j.fuel.2020.119577

Cowieson, A.J. & Kluenter, A.M. 2019. Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology, 250: 81-92, ISSN: 3778-8401. https://doi.org/10.1016/j.anifeedsci.2018.04.026

de Oliveira, L.S., Balbino, E.M., Silva, T.N.S., Ily, L., da Rocha, T.C., de Oliveira Strada, E.S. & de Brito, J.A.G. 2019. Use of emulsifier and lipase in feeds for broiler chickens. Semina: Ciências Agrárias, 40(6Supl2): 3181-3196, ISSN: 1679-0359. https://doi.org/10.5433/1679-0359.2019v40n6Supl2p3181

Delgado, A., Valdivié, M. & Martínez, Y. 2020. Evaluación del raquis de maíz troceado como cama avícola sobre el desempeño productivo de pollitas ponedoras de reemplazo Dekalb White®. Revista de Producción Animal, 32(2): 14-26; ISSN: 2224-7920. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-79202020000200014#:~:text=Est%C3%A1%20investigaci%C3%B3n%20confirma%20que%20el,gen%C3%A9tica%20(Dekalb%2C%202014)

Font, H., Noda, A., Torres, V., Herrera, M., Lizazo, D., Sarduy, L. & Rodríguez, L. 2007. COMPARPRO: Comparación de Proporciones, Versión: 1.0. Mayabeque, Cuba

García, J., Mandalawi, H.A., Fondevila, G. & Mateos, G.G. (2019) Influence of beak trimming and inclusion of sodium butyrate in the diet on growth performance and digestive tract traits of brown-egg pullets differing in initial body weight. Poultry Science, 98(9): 3937-3949, ISSN 1350-4177. https://doi.org/10.3382/ps/pez129

Gole, M., Manwar, S., Khose, K., Rathod, P., Kumar, D. & Ganguly, R.K.B. (2022) Efficacy evaluation of a poultry feed emulsifier in broiler chicken. The Pharma Innovation Journal, 11(1): 1119-1123, ISSN: 2349-8242. URL: https://www.thepharmajournal.com/archives/2022/vol11issue1S/PartQ/S-11-1-189-199.pdf

Hadinia, S.H., Carneiro, P.R.O., Ouellette, C.A. & Zuidhof, M.J. (2018) Energy partitioning by broiler breeder pullets in skip-a-day and precision feeding systems. Poultry Science, 97(12): 4279-4289, ISSN: 1350-4177. https://doi.org/10.3382/ps/pey283

Hendrix-Genetics. 2020. Nutrition Guide. Available at: https://layinghens.hendrix-genetics.com/documents/883/Nutrition_Guide_English_vs4.pdf. Consulted: June 17/2023

Hendrix-Genetics. 2022. Management Guide. Available at: https://layinghens.hendrix-genetics.com/en/technical-support/management/. Consulted: June 17/2023

Lamot, D.M., Sapkota, D., Wijtten, P.J.A., van den Anker, I., Heetkamp, M.J.W., Kemp, B. & van den Brand, H. 2017. Diet density during the first week of life: Effects on energy and nitrogen balance characteristics of broiler chickens. Poultry Science, 96(7): 2294-2300, ISSN: 0032-5791. http://dx.doi.org/10.3382/ps/pex020

Lichovnikova, M., Zeman, L., Klecker, D. & Fialova, M. 2002. The effects of the long-term feeding of dietary lipase on the performance of laying hens. Czech Journal of Animal Science, 47(4): 141-145, ISSN: 1805-9309. URL: https://agris.fao.org/agris-search/search.do?recordID=CZ2002000806

Meng, X., Slominski, B.A. & Guenter, W. 2004. The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat-based diets. Poultry Science, 83(10): 1718-1727, ISSN: 1350-4177. https://doi.org/10.1093/ps/83.10.1718

Movagharnejad, M., Kazemi-Fard, M., Rezaei, M. & Teimuri-Yansari, A. 2020. Effects of lysophospholipid and lipase enzyme supplementation to low metabolizable energy diets on growth performance, intestinal morphology and microbial population and some blood metabolites in broiler chickens. Brazilian Journal of Poultry Science, 22(2): 1-8, ISSN: 1806-9061. https://doi.org/10.1590/1806-9061-2019-1118

Munir, K. & Maqsood, S. 2013. A review on role of exogenous enzyme supplementation in poultry production. Emirates Journal of Food and Agriculture, 25(1): 66-80, ISSN: 2079-0538. https://doi.org/10.9755/ejfa.v25i1.9138

Nogueira, W.C.L., Velásquez, P.A.T., Furlan, R.L. & Macari, M. 2013. Effect of dietary energy and stocking density on the performance and sensible heat loss of broilers reared under tropical winter conditions. Brazilian Journal of Poultry Science, 15: 53-57, ISSN: 1806-9061. https://doi.org/10.1590/S1516-635X2013000100009

Noy, Y. & Sklan, D. 1995. Digestion and absorption in the young chick. Poultry Science, 74(2): 366–373, ISSN: 0032-5791. https://doi.org/10.3382/ps.0740366

Olivecrona, G. 2016. Role of lipoprotein lipase in lipid metabolism. Current Opinion in Lipidology, 27(3): 233-241, ISSN: 1473-6535. https://doi.org/10.3390/biomedicines9070782

Savoldi, T.L., Nunes, R.V., Scherer, C., Tsutsumi, C.Y., Scheneiders, J.L., Marques, M.F.G. & Meza, S.K.L. 2012. Níveis de energia metabolizável e lisina digestível para o desempenho de pintos de corte de 1 a 10 dias de idade. Scientia Agraria Paranaensis, 11: 49-58, ISSN: 1983-1471. https://doi.org/10.18188/sap.v11io.7870

Siqueira, L.A., Almeida, L.F., Fernandes, J.P.A., Araújo, M.C.U. & Lima, R.A.C. 2021. Ultrasonic-assisted extraction and automated determination of catalase and lipase activities in bovine and poultry livers using a digital movie-based flow-batch analyzer. Ultrasonics Sonochemistry, 79: 105774, ISSN: 1350-4177. https://doi.org/10.1016/j.ultsonch.2021.105774

Suresh, B.N., Reddy, B.S.V., Prabhu, T.M., Manju, G.U. & Suma, N. 2014. Effect of dietary inclusion of lipid utilizing agents and NSP-degrading enzymes on performance of layers. Animal Nutrition and Feed Technology, 14(2): 379-384, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2014.01330.4

Sweeney, K.M., Aranibar, C.D., Kim, W.K., Williams, S.M., Avila, L.P., Starkey, J.D. & Wilson, J.L. 2022. Impact of every-day versus skip-a-day feeding of broiler breeder pullets during rearing on body weight uniformity and reproductive performance. Poultry Science, 101959, ISSN: 0032-5791. https://doi.org/10.1016/j.psj.2022.101959

Temiraev, V.H., Baeva, A.A., Vityuk, L.A., Mamukaev, M.N., Yurina, N.A., Ktsoeva, I.I. & Vologirova, F.A. 2020. Effect of probiotics on digestive metabolism in growing and laying poultry birds. Journal of Livestock Science, 11(1): 33-39, ISSN: 2277-6214. https://doi.org/10.33259/JLivestSci.2020.33-39

Upadhaya, S.D., Yun, K.S., Zhao, P.Y., Lee, I.S. & Kim, I.H. 2019. Emulsifier as a feed additive in poultry and pigs-a review. Animal Nutrition and Feed Technology, 19(2): 323-336, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2019.00030.1

Valentini, J., Da Silva, A.S., Fortuoso, B.F., Reis, J.H., Gebert, R.R., Griss, L.G. & Tavernari, F.C. 2020. Chemical composition, lipid peroxidation, and fatty acid profile in meat of broilers fed with glycerol monolaurate additive. Food Chemistry, 330: 127187, ISSN: 0308-8146. https://doi.org/10.1016/j.foodchem.2020.127187

Wickramasuriya, S.S., Macelline, S.P., Cho, H.M., Hong, J.S., Park, S.H. & Heo, J.M. 2020. Physiological effects of a tallow-incorporated diet supplemented with an emulsifier and microbial lipases on broiler chickens. Frontiers in Veterinary Science, 7: 583998. ISSN: 2297-1769. https://doi.org/10.3389/fvets.2020.583998

Wu, G., Bryant, M.M., Voitle, R.A. & Roland Sr, D.A. 2005. Effect of dietary energy on performance and egg composition of Bovans White and Dekalb White hens during phase I. Poultry Science, 84(10): 1610-1615, ISSN: 1350-4177. https://doi.org/10.1093/ps/84.10.1610

Yao, W., Liu, K., Liu, H., Jiang, Y., Wang, R., Wang, W. & Wang, T. 2021. A valuable product of microbial cell factories: Microbial lipase. Frontiers in Microbiology, 12: 743377, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2021.743377

Zhu, H.L., Hu, L.L., Hou, Y.Q., Zhang, J. & Ding, B.Y. 2014. The effects of enzyme supplementation on performance and digestive parameters of broilers fed corn-soybean diets. Poultry Science, 93(7): 1704-1712, ISSN: 1350-4177. https://doi.org/10.3382/ps.2013-03626

Most read articles by the same author(s)

1 2 3 4 > >>