Events
(eg., agricultural pest) can have different magnitudes (numerical
measurements), frequencies, and distributions (aggregate, random, or
regular) of occurrence. In general, higher magnitude and frequency, with
aggregated distribution, greater will be the problem or the solution
(eg., natural enemies versus pests) on system (Da Silva et al. 2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.).
Hence, indices are used to help on decision-making in certain questions
and, many of them, determine key-factors in an event, on some knowledge
areas, such as in agrarian and biological: Crop and Ecological Life
Tables (Henderson and Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630. and Da Silva et al. 2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.),
among others. In general, these tools use abundance (magnitude),
constancy and/or frequency of the events, which can be analyzed by
correlation, factor analysis, frequency distribution, matrices, mean or
t-tests, multiple or simple regression analysis (Henderson and Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630. and Da Silva et al. 2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.).
The objective of this study was to develop an indice, which can
determine the loss and solution sources, classifying them according to
their importance in terms of loss or income gain on system (eg. natural
system = cerrado).
The data used were adapted (Leite et al. 2006Leite, G.L.D., Veloso, R.V.S., Zanuncio, J.C., Fernandes, L.A. & Almeida, C.I.M. 2006. "Phenology of Caryocar brasiliense in the Brazilian Cerrado region"". Forest Ecology and Management, 236(2-3): 286-294, ISSN: 0378-1127, DOI: https://doi.org/10.1016/j.foreco.2006.09.013., 2012Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Almeida, C.I.M., Ferreira,
P.S.F., Fernandes, G.W. & Soares, M.A. 2012. "Habitat complexity and
Caryocar brasiliense herbivores (Insecta; Arachnida: Araneae) ". Florida Entomologist, 95(4): 819-830, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.095.0402., 2016Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Alonso, J., Ferreira, P.S.F.,
Almeida, C.I.M., Fernandes, G.W. & Serrão, J.E. 2016. "Diversity of
Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado". Florida Entomologist, 99(2): 239-247, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.099.0213., 2017Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Azevedo, A.M., Silva, J.L.,
Wilcken, C.F. & Soares, M.A. 2017. ""Architectural diversity and
galling insects on Caryocar brasiliense trees". Scientific Reports, 7(1): 1-7, ISSN: 2045-2322, DOI: https://doi.org/10.1038/s41598-017-16954-6.)
and classified as loss source (L.S.) or solution source (S.S.) are not
mentioned, and production, in 48 samples. Scientific names of
herbivorous insects (L.S.) and natural enemies (S.S.) due to the
importance indice can be used in other areas such as exotic mammals,
plant diseases, weeds, versus production.
The
type of distribution (aggregated, random, or regular) of L.S. or S.S.
was defined by the Chi-square test using the BioDiversity Professional
program, version 2 (Krebs 1989Krebs, C.J. 1998. Bray-Curtis cluster analysis [online]. Available: http://biodiversity-pro.software.informer.com, [May 2nd 2018].).
The data were subjected to simple regression analysis and theirs
parameters were all significant (P< 0.05) using the statistical
program System for Analysis Statistics and Genetics (SAEG 2007SAEG (Sistema para Análises Estatísticas e Genéticas). 2007. Version 9.1 [online]. Available from: http://arquivo.ufv.br/saeg/, [Consulted: June 30th, 2018].), version 9.1 (table 1).
Simple equations were selected by observing the criteria: i)
distribution of data in the figures (linear or quadratic response), ii)
the parameters used in these regressions were the most significant ones (P <0.05), iii) P < 0.05 and F of the Analysis of Variance of these regressions, and iv) the coefficient of determination of these equations (R2). Only loss sources and solution sources with P < 0.05 were showed in the table 1. It is necessary knowledge of the system to select the possible loss sources and solution sources.
Table 1.
Aggregated, regular, or random
distribution of the loss or solution sources; and simple regression
equations with their coefficients of determination (R
2), significance (P) and F of the analysis of variance (ANOVA) of reductions of production (R.P.) by source of loss (L.S.) and reductions of loss sourcers (R.L.S.) due solution sources (S.S.). n = 48
Source | Qui-square test |
---|
Loss | Variance | Mean | Chi-square | d.f. | P | Distribution |
---|
1 | 177.45 | 16.5 | 505.45 | 47 | 0.000 | Aggregated |
2 | 93.45 | 20.54 | 213.81 | 47 | 0.000 | Aggregated |
3 | 0.25 | 0.46 | 26.00 | 47 | 0.994 | Regular |
4 | 0.33 | 0.58 | 26.86 | 47 | 0.992 | Regular |
5 | 1050.97 | 37.08 | 1332.02 | 47 | 0.000 | Aggregated |
6 | 19.38 | 1.67 | 546.40 | 47 | 0.000 | Aggregated |
7 | 4936.34 | 29.00 | 8000.28 | 47 | 0.000 | Aggregated |
Solution |
1 | 57.66 | 11.71 | 231.45 | 47 | 0.000 | Aggregated |
2 | 1.53 | 1.50 | 48.00 | 47 | 0.432 | Random |
3 | 50.21 | 7.50 | 314.67 | 47 | 0.000 | Aggregated |
4 | 0.55 | 0.71 | 36.59 | 47 | 0.863 | Random |
5 | 1.57 | 1.04 | 70.96 | 47 | 0.014 | Aggregated |
6 | 3.77 | 0.75 | 236.00 | 47 | 0.000 | Aggregated |
7 | 0.20 | 0.13 | 74.00 | 47 | 0.007 | Aggregated |
8 | 140.50 | 7.58 | 870.81 | 47 | 0.000 | Aggregated |
9 | 193.33 | 6.83 | 1329.76 | 47 | 0.000 | Aggregated |
Simple regression analysis | ANOVA |
| R2 | P | F |
R.P. = - 39.43 + 33.26 x L.S.1 - 0.80 x L.S.1
2 | 0.61 | 0.0000 | 35.25 |
R.P. = 50.85 + 1404.77 x L.S.7 - 2242.16 x L.S.7
2 | 0.20 | 0.0060 | 5.75 |
R.L.S.1 = - 0.46 + 5.13 x S.S.3 - 0.21 x S.S.3
2 | 0.99 | 0.0000 | 7312.19 |
R.L.S.7 = 0.13 + 0.46 x S.S.4 - 0.18 x S.S.4
2 | 0.39 | 0.0000 | 14.15 |
R.L.S.7 = 0.11 + 0.26 x S.S.5 - 0.04S.S.5
2 | 0.53 | 0.0000 | 25.63 |
R.L.S.7 = 0.21 + 0.16 x S.S.6 - 0.01 x S.S.6
2 | 0.27 | 0.0007 | 8.50 |
R.L.S.7 = 0.10 + 0.04 x S.S.8 - 0.0006 x S.S.8
2 | 0.71 | 0.0000 | 55.10 |
R.L.S.7 = 0.15 + 2.94 x S.S.9 - 3.71 x S.S.9
2 | 0.44 | 0.0000 | 17.89 |
The developed indice was:
where,
i) key source (ks) is:
where,
R2
= determination coefficient and P = significance of ANOVA, of the
simple regression equation of the loss source (L.S.) or solution source
(S.S.).
In the case of L.S. is:
where,
R.P. = [R
2 x (1 - P)]/total n of the L.S. on the samples,
In the case of S.S. is:
where,
E.S. = [R
2 x (1 - P)]/total n of the S.S. on the samples.
When a S.S. acts on more than one L.S., theirs E.S. are summed. E.S. or R.P. = 0 when E.S. or R.P. is non-significative on the L.S. or R.P., respectively, and
ii) constancy (c) is:
where,
absence = 0 or presence = 1, and
iii) distribution source (ds) is:
Percentage of loss of production per loss source (% L.P.L.S.) is:
where,
P. = total production on the system,
and
where,
R.P.L.S. = {R
2 x (1 - P)]/total n of L.S. on the samples.
Percentagem of loss of production per loss source (% L.P.L.S.) per soluction source (S.S.) is:
where,
I.G. = {total production (P.) x reduction of the L.S. by S.S. (R.L.S.)] x total n of the S.S on the samples,
and
The ks of the S.S. are separeted per L.S..
Interaction
between two or more sources of loss or solution may be added as a
treatment to be tested together with the other sources. If not, the
interaction, as a treatment, may apply the following:
ks of the interaction = [(R
2 x (1 - P)]/total n on the samples, R
2 = determination coefficient and P = significance of
ANOVA of the interaction, of the simple regression equation of the loss
source (L.S.) or solution source (S.S.) of the interaction. But the new
n of the interaction will be obtained from the means of this parameter isolated from the two or more sources of loss or solution,
c and ds
of the interaction will be obtained from the means of these parameters
isolated from the two or more sources of loss or solution, and
all
calculations are made separately for the interaction and at the end it
is compared with the other sources of loss or solution.
The loss source (L.S.) L.S.1 and L.S.7 showed, among the seven L.S., the % I.I. (85.06 and 14.94%, respectively) significatives on production reduction (5.89 and 3.37%, respectively), on system (tables 2, 3).
Table 2.
Total number (n), reduction on production (R.P.), effectiveness of the solution (E.S.), key-source (ks), constancy (c), distribution source (ds), number of importance indice (n. I.I.), sum of n. I.I. (Σ n. I.I.), and percentage of I.I. by loss source (L.S.) or solution source (S.S.) by L.S
Loss source |
---|
L.S. |
n
|
R.P.
|
ks
|
c
|
ds
|
n. I.I.
| Σ n. I.I.
|
% I.I.
|
---|
1 | 792 | 0.6100 | 0.000770202 | 38 | 1.000 | 0.029267677 | 0.034409056 | 85.058 |
2 | 986 | 0.0000 | 0.000000000 | 48 | 1.000 | 0.000000000 | 0.034409056 | 0.000 |
3 | 22 | 0.0000 | 0.000000000 | 22 | 0.006 | 0.000000000 | 0.034409056 | 0.000 |
4 | 28 | 0.0000 | 0.000000000 | 26 | 0.008 | 0.000000000 | 0.034409056 | 0.000 |
5 | 1780 | 0.0000 | 0.000000000 | 46 | 1.000 | 0.000000000 | 0.034409056 | 0.000 |
6 | 80 | 0.0000 | 0.000000000 | 10 | 1.000 | 0.000000000 | 0.034409056 | 0.000 |
7 | 1392 | 0.1988 | 0.000142816 | 36 | 1.000 | 0.005141379 | 0.034409056 | 14.942 |
Solution source |
S.S. not associated with any L.S. or associated with L.S.2-6 |
S.S. | n | E.S. | ks | c | ds | n. I.I. | Σ n. I.I. | % I.I. |
1 | 562 | 0.000 | 0.000000000 | 48 | 1.000 | 0.000000000 | 0.000000000 | 0.000 |
2 | 72 | 0.000 | 0.000000000 | 38 | 0.568 | 0.000000000 | 0.000000000 | 0.000 |
7 | 7 | 0.000 | 0.000000000 | 8 | 0.993 | 0.000000000 | 0.000000000 | 0.000 |
L.S.1 |
3 | 360 | 0.990 | 0.002750000 | 38 | 1.000 | 0.104500000 | 0.104500000 | 100.00 |
L.S.7 |
4 | 34 | 0.39 | 0.011470588 | 26 | 0.134 | 0.040726564 | 0.529809273 | 7.687 |
5 | 51 | 0.53 | 0.010392157 | 28 | 0.986 | 0.287031585 | 0.529809273 | 54.176 |
6 | 36 | 0.270 | 0.007494750 | 14 | 1.000 | 0.104926500 | 0.529809273 | 19.805 |
8 | 365 | 0.710 | 0.001945205 | 32 | 1.000 | 0.062246575 | 0.529809273 | 11.749 |
9 | 328 | 0.440 | 0.001341463 | 26 | 1.000 | 0.034878049 | 0.529809273 | 6.583 |
I.I. = ks x c x ds. ks = R.P./n or E.S./n. R.P. or E.S. = R
2 x (1 - P), R
2 = determination coefficient and P = significance of ANOVA, of the simple regression equation. c = Σ of occurrence of L.S. or S.S. on each sample, 0 = absence or 1 = presence. ds = 1 - P of Chi-square test of the L.S. or S.S.. When a S.S. operates in more than one L.S., its E.S. are summed. R.P. or E.S. = 0 when R.P. or S.S. non-significant with reduction on production or of the L.S.
Table 3.
Total number (n) and reduction on production per loss source (R.P.L.S.), total samples (Sa.), loss of production (L.P.) by loss source (L.P.L.S.) and production per sample (P.), and % of L.P.L.S. per sample; and total number (n) and ks of the solution source (S.S.), reduction of L.S. (R.L.S.), income gain (I.G.) and its %, and % of R.P.L.S. by S.S
Loss of production by loss source |
---|
L.S. |
n
|
R.P.L.S.
|
Sa.
|
L.P.L.S.
|
P.
|
% L.P.L.S.
|
---|
1 | 792 | 0.61 | 48 | 10.07 | 171 | 5.89 |
7 | 1392 | 0.1988 | 48 | 5.77 | 171 | 3.37 |
Reduction on production per loss source and total |
L.S.1 |
S.S. | n | ks | Sa. | R.L.S. | L.P. | P. | I.G. | % I.G. | % R.P.L.S. |
3 | 360 | 0.99 | 48 | 7.425 | 10.07 | 171 | 0.208 | 0.122 | 2.063 |
Σa | --- | --- | --- | --- | --- | --- | --- | 0.122 | 2.063 |
L.S.7 |
4 | 34 | 0.39 | 48 | 0.276 | 5.77 | 171 | 0.047 | 0.027 | 0.813 |
5 | 51 | 0.53 | 48 | 0.563 | 5.77 | 171 | 0.064 | 0.037 | 1.104 |
6 | 36 | 0.27 | 48 | 0.202 | 5.77 | 171 | 0.032 | 0.019 | 0.562 |
8 | 365 | 0.71 | 48 | 5.399 | 5.77 | 171 | 0.085 | 0.050 | 1.479 |
9 | 328 | 0.44 | 48 | 3.007 | 5.77 | 171 | 0.053 | 0.031 | 0.917 |
Σb | --- | --- | --- | --- | --- | --- | --- | 0.165 | 4.875 |
Σa+b | --- | --- | --- | --- | --- | --- | --- | 0.287 | 6.934 |
L.P.L.S. = (n x R.P.L.S.)/Sa. % L.P.L.S. = (L.P.L.S./P.) x 100. R.L.S. = (n x ks)/Sa.. I.G. = (P. x R.L.S.) x n. S.S.. % I.G. = (I.G. x 100)/P.. % R.P.L.S. = (I.G. x 100)/L.P. Ks of S.S. are separated by L.S.
Solution source (S.S.) S.S.3 (% I.I. = 100) reduced the loss per L.S.1; and S.S.5 (% I.I. = 54.18), S.S.6 (% I.I. = 19.81), S.S.8 (% I.I. = 11.75), S.S.4 (% I.I. = 7.69), and S.S.9 (% I.I. = 6.58) that of L.S.7 on system production. The possible solution sources S.S.1, S.S.2, and S.S.7 showed % I.I.
= 0.00% due to non-significative effect on the reduction of losses by
important L.S. or due to reduced the L.S. which did not correlate with
production loss on system. The S.S.3 reduced production loss (2.06%) per L.S.1 increasing in income gain (0.12%) on system production. The loss of production per L.S.7 was reduced by the S.S.8 (1.48%), S.S.5 (1.10%), S.S.9 (0.92%), S.S.4 (0.81%), and S.S.5 (0.56%), totaling 4.88%. The loss reduction per L.S.7 due to the soluction factors S.S.8, S.S.5, S.S.4, S.S.9, and S.S.6,
increasing in income gain (0.05, 0.04, 0.03, 0.03, and 0.02%,
respectively), totaling 0.17%. The total reduction in production loss
due to loss sources (L.S.1 and L.S.7) was 6.93%, with an increase on system productivity of 0.29% due to solution sources cited above (tables 2, 3).
The percentage of importance indice (% I.I.) was effective in identifying of loss sources on system (eg., reduction on production), being simpler than a Crop Life Table (Da Silva et al. 2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.), but this indice does not replace a Crop Life Table. The use of % I.I.
is for cases (eg. natural system, cerrado) in which it is not possible
to evaluate all flowers and fruits of all plants in the experimental
useful plot, identifying the factors of plant loss, as done by Crop Life
Table (Da Silva et al. 2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.). Parameters of Life Table supply reliable information, eg. reproductive potential and mortality factors of species (Henderson and Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630.). Fruit production and arthropods (leaves, flowers, and fruits) data, used to test % I.I., were obtained on Caryocar brasiliense Camb. (Caryocaraceae) trees, over 3 m high, randomly, in cerrado areas, in three years, monthly (Leite et al. 2006Leite, G.L.D., Veloso, R.V.S., Zanuncio, J.C., Fernandes, L.A. & Almeida, C.I.M. 2006. "Phenology of Caryocar brasiliense in the Brazilian Cerrado region"". Forest Ecology and Management, 236(2-3): 286-294, ISSN: 0378-1127, DOI: https://doi.org/10.1016/j.foreco.2006.09.013., 2012Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Almeida, C.I.M., Ferreira,
P.S.F., Fernandes, G.W. & Soares, M.A. 2012. "Habitat complexity and
Caryocar brasiliense herbivores (Insecta; Arachnida: Araneae) ". Florida Entomologist, 95(4): 819-830, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.095.0402., 2016Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Alonso, J., Ferreira, P.S.F.,
Almeida, C.I.M., Fernandes, G.W. & Serrão, J.E. 2016. "Diversity of
Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado". Florida Entomologist, 99(2): 239-247, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.099.0213., 2017Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Azevedo, A.M., Silva, J.L.,
Wilcken, C.F. & Soares, M.A. 2017. ""Architectural diversity and
galling insects on Caryocar brasiliense trees". Scientific Reports, 7(1): 1-7, ISSN: 2045-2322, DOI: https://doi.org/10.1038/s41598-017-16954-6.). Flowers and fruits were evaluated on some tree branches and then estimated the total per tree (Leite et al. 2006Leite, G.L.D., Veloso, R.V.S., Zanuncio, J.C., Fernandes, L.A. & Almeida, C.I.M. 2006. "Phenology of Caryocar brasiliense in the Brazilian Cerrado region"". Forest Ecology and Management, 236(2-3): 286-294, ISSN: 0378-1127, DOI: https://doi.org/10.1016/j.foreco.2006.09.013.), thus, the use of this indice is for cases where it is not possible to use a Crop Life Table.
The % I.I.
was, also, effective in identifying solution sources on system (eg.,
increasing production), similar to an Ecological Life Table (Henderson and Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630.). The % I.I. does not replace an Ecological Life Table (Henderson and Southwood 2016). The use of % I.I.
is for cases (eg. natural system, cerrado) in which it is not able to
mark and monitor the animal (eg., pest insects), identifying the cause
of its mortality, as done by Ecological Life Table (Henderson and Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630.).
Insect pest rearing, detailed field studies, time and researchers
trained to identify and quantify the control of natural factors daily
until the insect pest life cycle is complete, are the major steps to
determine the parameters of a Life Table of pest insects (Da Silva et al. 2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.). The evaluation of herbivorous insects and their natural enemies, including spiders, on C. brasiliense trees, was not individually during their lives (Leite et al. 2012Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Almeida, C.I.M., Ferreira,
P.S.F., Fernandes, G.W. & Soares, M.A. 2012. "Habitat complexity and
Caryocar brasiliense herbivores (Insecta; Arachnida: Araneae) ". Florida Entomologist, 95(4): 819-830, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.095.0402., 2016Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Alonso, J., Ferreira, P.S.F.,
Almeida, C.I.M., Fernandes, G.W. & Serrão, J.E. 2016. "Diversity of
Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado". Florida Entomologist, 99(2): 239-247, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.099.0213., 2017Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Azevedo, A.M., Silva, J.L.,
Wilcken, C.F. & Soares, M.A. 2017. ""Architectural diversity and
galling insects on Caryocar brasiliense trees". Scientific Reports, 7(1): 1-7, ISSN: 2045-2322, DOI: https://doi.org/10.1038/s41598-017-16954-6.),
nor would it be possible due to the height of these plants in cerrado
areas. But, with the application of this indice, it was possible to
determine the effects of these natural enemies on herbivores and fruit
production per tree on natural system.
The % I.I. separated the loss sources (eg., L.S.1 = 85.06%) on production reduction (eg., 5.89%) and the solution sources (eg., S.S.5
= 54.18%) with total income gain (eg., 0.29%) on system, with the
possibility to calculate, monetarily, these losses or effectiveness of
the solutions. The % I.I. can help, as example, to determine
which pests, eg. exotic mammals, insects, plant diseases, and weeds,
cause the biggest problems in plant production and the best control
methods (eg., biological control) are more harmful or effective on
system (eg., crops) and how much money is lost or saved. Here it is
shown the percentage of I.I. is an indice to detect the loss or
solution key-sources on a system, doing it possible to obtain of loss
and income gain on some knowledge areas.
Los
eventos (por ejemplo, plagas agrícolas) pueden tener diferentes
magnitudes (medidas numéricas), frecuencias y distribuciones (agregadas,
aleatorias o regulares) de ocurrencia. En general, a mayor magnitud y
frecuencia, con distribución agregada, mayor será el problema o la
solución (por ejemplo, enemigos naturales versus plagas) en el sistema (Da Silva et al. 2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.).
Por lo tanto, los índices se utilizan para ayudar en la toma de
decisiones en determinadas cuestiones y, muchos de ellos, determinan
factores clave en un evento, en algunas áreas del conocimiento, tales
como en agrarios y biológicos: Tablas de vida ecológica y de cultivos (Henderson y Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630. y Da Silva et al.2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.),
entre otros. En general, estas herramientas utilizan abundancia
(magnitud), constancia y/o frecuencia de los eventos, los cuales pueden
ser analizados por correlación, análisis factorial, distribución de
frecuencias, matrices, medias o pruebas t, análisis de regresión
múltiple o simple (Henderson y Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630. y Da Silva et al.2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.).
El objetivo de este estudio fue desarrollar un índice que pueda
determinar las fuentes de pérdida y solución, clasificándolas según su
importancia en términos de pérdida o ganancia de ingresos en el sistema
(por ejemplo, sistema natural = cerrado).
Los datos utilizados fueron adaptados (Leite et al.2006Leite, G.L.D., Veloso, R.V.S., Zanuncio, J.C., Fernandes, L.A. & Almeida, C.I.M. 2006. "Phenology of Caryocar brasiliense in the Brazilian Cerrado region"". Forest Ecology and Management, 236(2-3): 286-294, ISSN: 0378-1127, DOI: https://doi.org/10.1016/j.foreco.2006.09.013., 2012Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Almeida, C.I.M., Ferreira,
P.S.F., Fernandes, G.W. & Soares, M.A. 2012. "Habitat complexity and
Caryocar brasiliense herbivores (Insecta; Arachnida: Araneae) ". Florida Entomologist, 95(4): 819-830, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.095.0402., 2016Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Alonso, J., Ferreira, P.S.F.,
Almeida, C.I.M., Fernandes, G.W. & Serrão, J.E. 2016. "Diversity of
Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado". Florida Entomologist, 99(2): 239-247, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.099.0213., 2017Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Azevedo, A.M., Silva, J.L.,
Wilcken, C.F. & Soares, M.A. 2017. ""Architectural diversity and
galling insects on Caryocar brasiliense trees". Scientific Reports, 7(1): 1-7, ISSN: 2045-2322, DOI: https://doi.org/10.1038/s41598-017-16954-6.)
y clasificados como fuente de pérdida (F.P.) o fuente de solución
(F.S.), y producción, en 48 muestras. No se mencionaron los nombres
científicos de insectos herbívoros (F.P.) y enemigos naturales (F.S.)
debido a que el índice de importancia se puede usar en otras áreas como
mamíferos exóticos, enfermedades de plantas, malezas, versus producción.
El
tipo de distribución (agregada, aleatoria o regular) de P.F. o F.S. se
definió mediante la prueba de Chi-cuadrado utilizando el programa
BioDiversity Professional, version 2 (Krebs 1989Krebs, C.J. 1998. Bray-Curtis cluster analysis [online]. Available: http://biodiversity-pro.software.informer.com, [May 2nd 2018].).
Los datos fueron sometidos a análisis de regresión simple y sus
parámetros fueron todos significativos (P <0.05) utilizando el
programa estadístico System for Analysis Statistics and Genetics (SAEG 2007SAEG (Sistema para Análises Estatísticas e Genéticas). 2007. Version 9.1 [online]. Available from: http://arquivo.ufv.br/saeg/, [Consulted: June 30th, 2018].), version 9.1 (tabla 1).
Las ecuaciones simples se seleccionaron observando los criterios: i)
distribución de los datos en las figuras (respuesta lineal o
cuadrática), ii) los parámetros utilizados en estas regresiones fueron
los más significativos (P <0.05), iii) P <0.05 y F del Análisis de
Varianza de estas regresiones, y iv) el coeficiente de determinación de
estas ecuaciones (R2). En la tabla 1
se muestran únicamente las fuentes de pérdidas y las fuentes de
solución con P <0.05. Es necesario un conocimiento del sistema para
seleccionar las posibles fuentes de pérdidas y fuentes de solución.
Table 1.
Aggregated, regular, or random
distribution of the loss or solution sources; and simple regression
equations with their coefficients of determination (R
2), significance (P) and F of the analysis of variance (ANOVA) of reductions of production (R.P.) by source of loss (L.S.) and reductions of loss sourcers (R.L.S.) due solution sources (S.S.). n = 48
Source | Qui-square test |
---|
Loss | Variance | Mean | Chi-square | d.f. | P | Distribution |
---|
1 | 177.45 | 16.5 | 505.45 | 47 | 0.000 | Aggregated |
2 | 93.45 | 20.54 | 213.81 | 47 | 0.000 | Aggregated |
3 | 0.25 | 0.46 | 26.00 | 47 | 0.994 | Regular |
4 | 0.33 | 0.58 | 26.86 | 47 | 0.992 | Regular |
5 | 1050.97 | 37.08 | 1332.02 | 47 | 0.000 | Aggregated |
6 | 19.38 | 1.67 | 546.40 | 47 | 0.000 | Aggregated |
7 | 4936.34 | 29.00 | 8000.28 | 47 | 0.000 | Aggregated |
Solution | | | | | | |
1 | 57.66 | 11.71 | 231.45 | 47 | 0.000 | Aggregated |
2 | 1.53 | 1.50 | 48.00 | 47 | 0.432 | Random |
3 | 50.21 | 7.50 | 314.67 | 47 | 0.000 | Aggregated |
4 | 0.55 | 0.71 | 36.59 | 47 | 0.863 | Random |
5 | 1.57 | 1.04 | 70.96 | 47 | 0.014 | Aggregated |
6 | 3.77 | 0.75 | 236.00 | 47 | 0.000 | Aggregated |
7 | 0.20 | 0.13 | 74.00 | 47 | 0.007 | Aggregated |
8 | 140.50 | 7.58 | 870.81 | 47 | 0.000 | Aggregated |
9 | 193.33 | 6.83 | 1329.76 | 47 | 0.000 | Aggregated |
Simple regression analysis | ANOVA |
| R2 | P | F |
R.P. = - 39.43 + 33.26 x L.S.1 - 0.80 x L.S.1
2 | 0.61 | 0.0000 | 35.25 |
R.P. = 50.85 + 1404.77 x L.S.7 - 2242.16 x L.S.7
2 | 0.20 | 0.0060 | 5.75 |
R.L.S.1 = - 0.46 + 5.13 x S.S.3 - 0.21 x S.S.3
2 | 0.99 | 0.0000 | 7312.19 |
R.L.S.7 = 0.13 + 0.46 x S.S.4 - 0.18 x S.S.4
2 | 0.39 | 0.0000 | 14.15 |
R.L.S.7 = 0.11 + 0.26 x S.S.5 - 0.04S.S.5
2 | 0.53 | 0.0000 | 25.63 |
R.L.S.7 = 0.21 + 0.16 x S.S.6 - 0.01 x S.S.6
2 | 0.27 | 0.0007 | 8.50 |
R.L.S.7 = 0.10 + 0.04 x S.S.8 - 0.0006 x S.S.8
2 | 0.71 | 0.0000 | 55.10 |
R.L.S.7 = 0.15 + 2.94 x S.S.9 - 3.71 x S.S.9
2 | 0.44 | 0.0000 | 17.89 |
El índice desarrollado fue:
donde,
i) fuente clave (fc) es:
donde,
R2
= coeficiente de determinación y P = significancia de ANOVA, de la
ecuación de regresión simple de la fuente de pérdida (F.P.) o fuente de
solución (F.S.).
En el caso de F.P. es:
donde,
R.P. = [R
2 x (1 - P)]/ n total de la F.P. en las muestras,
En el caso de F.S. es:
donde,
E.S. = [R
2 x (1 - P)]/ n total de la F.S. en las muestras.
Cuando una F.S. actúa sobre más de una F.P., su E.S. se suma.o R.P. = 0 cuando E.S. o R.P. no es significativo en la F.P. o R.P., respectivamente, y
ii) constancia (c) es:
donde,
ausencia = 0 o presencia = 1, y
iii) fuente de distribución (fd) es:
Porcentaje de pérdida de producción por fuente de pérdida (% P.P.F.P.) es:
donde,
P. =producción total en el sistema,
y
donde,
R.P.F.P. = {R
2 x (1 - P)]/ n total de F.P. en las muestras.
Porcentaje de pérdida de producción por fuente de pérdida (% P.P.F.P.) por fuente de solución (F.S.) es:
donde,
G.I. = {producción total (P.) x reducción de F.P. por F.S. (R.F.P.) ] x n total de F.S en las muestras,
y
Los fc de F.S. están separados por F.P.
La
interacción entre dos o más fuentes de pérdida o fuentes de solución
puede agregarse como un tratamiento para ser probado junto con las otras
fuentes. Si no, la interacción, como tratamiento, puede aplicar lo
siguiente:
fc de la interacción= [(R
2 x (1 - P)]/ n total en las muetras, R
2 = coeficiente de determinación y P = significancia
de ANOVA de la interacción, de la ecuación de regresión simple de la
fuente de pérdida (F.P.) o fuente de solución (F.S.) de la interacción.
Pero el nuevo n de la interacción se obtendrá de la media de este
parámetro aislado de las dos o más fuentes de pérdida o solución,
c and fd de la interacción se obtendrán a partir de estos parámetros aislados de las dos o más fuentes de pérdida o solución, y
todos los cálculos se realizan por separado para la interacción y al
final se comparan con las otras fuentes de pérdida o solución.
La fuente de pérdida (F.P.) F.P.1 y F.P.7
mostró, entre las siete F.P., el % I.I. (85,06 y 14,94%,
respectivamente) significativos en la reducción de producción (5,89 y
3,37%, respectivamente), en el sistema (tablas 2, 3).
Table 2.
Total number (n), reduction on production (R.P.), effectiveness of the solution (E.S.), key-source (ks), constancy (c), distribution source (ds), number of importance indice (n. I.I.), sum of n. I.I. (Σ n. I.I.), and percentage of I.I. by loss source (L.S.) or solution source (S.S.) by L.S
Loss source |
---|
L.S. |
n
|
R.P.
|
ks
|
c
|
ds
|
n. I.I.
| Σ n. I.I.
|
% I.I.
|
---|
1 | 792 | 0.6100 | 0.000770202 | 38 | 1.000 | 0.029267677 | 0.034409056 | 85.058 |
2 | 986 | 0.0000 | 0.000000000 | 48 | 1.000 | 0.000000000 | 0.034409056 | 0.000 |
3 | 22 | 0.0000 | 0.000000000 | 22 | 0.006 | 0.000000000 | 0.034409056 | 0.000 |
4 | 28 | 0.0000 | 0.000000000 | 26 | 0.008 | 0.000000000 | 0.034409056 | 0.000 |
5 | 1780 | 0.0000 | 0.000000000 | 46 | 1.000 | 0.000000000 | 0.034409056 | 0.000 |
6 | 80 | 0.0000 | 0.000000000 | 10 | 1.000 | 0.000000000 | 0.034409056 | 0.000 |
7 | 1392 | 0.1988 | 0.000142816 | 36 | 1.000 | 0.005141379 | 0.034409056 | 14.942 |
Solution source |
S.S. not associated with any L.S. or associated with L.S.2-6 |
S.S. | n | E.S. | ks | c | ds | n. I.I. | Σ n. I.I. | % I.I. |
1 | 562 | 0.000 | 0.000000000 | 48 | 1.000 | 0.000000000 | 0.000000000 | 0.000 |
2 | 72 | 0.000 | 0.000000000 | 38 | 0.568 | 0.000000000 | 0.000000000 | 0.000 |
7 | 7 | 0.000 | 0.000000000 | 8 | 0.993 | 0.000000000 | 0.000000000 | 0.000 |
L.S.1 |
3 | 360 | 0.990 | 0.002750000 | 38 | 1.000 | 0.104500000 | 0.104500000 | 100.00 |
L.S.7 |
4 | 34 | 0.39 | 0.011470588 | 26 | 0.134 | 0.040726564 | 0.529809273 | 7.687 |
5 | 51 | 0.53 | 0.010392157 | 28 | 0.986 | 0.287031585 | 0.529809273 | 54.176 |
6 | 36 | 0.270 | 0.007494750 | 14 | 1.000 | 0.104926500 | 0.529809273 | 19.805 |
8 | 365 | 0.710 | 0.001945205 | 32 | 1.000 | 0.062246575 | 0.529809273 | 11.749 |
9 | 328 | 0.440 | 0.001341463 | 26 | 1.000 | 0.034878049 | 0.529809273 | 6.583 |
I.I. = ks x c x ds. ks = R.P./n or E.S./n. R.P. or E.S. = R
2 x (1 - P), R
2 = determination coefficient and P = significance of ANOVA, of the simple regression equation. c = Σ of occurrence of L.S. or S.S. on each sample, 0 = absence or 1 = presence. ds = 1 - P of chi-square test of the L.S. or S.S.. When a S.S. operates in more than one L.S., its E.S. are summed. R.P. or E.S. = 0 when R.P. or S.S. non-significant with reduction on production or of the L.S.
Table 3.
Total number (n) and reduction on production per loss source (R.P.L.S.), total samples (Sa.), loss of production (L.P.) by loss source (L.P.L.S.) and production per sample (P.), and % of L.P.L.S. per sample; and total number (n) and ks of the solution source (S.S.), reduction of L.S. (R.L.S.), income gain (I.G.) and its %, and % of R.P.L.S. by S.S
Loss of production by loss source |
---|
L.S. |
n
|
R.P.L.S.
|
Sa.
|
L.P.L.S.
|
P.
|
% L.P.L.S.
|
---|
1 | 792 | 0.61 | 48 | 10.07 | 171 | 5.89 |
7 | 1392 | 0.1988 | 48 | 5.77 | 171 | 3.37 |
Reduction on production per loss source and total |
L.S.1 |
S.S. | n | ks | Sa. | R.L.S. | L.P. | P. | I.G. | % I.G. | % R.P.L.S. |
3 | 360 | 0.99 | 48 | 7.425 | 10.07 | 171 | 0.208 | 0.122 | 2.063 |
Σa | --- | --- | --- | --- | --- | --- | --- | 0.122 | 2.063 |
L.S.7 |
4 | 34 | 0.39 | 48 | 0.276 | 5.77 | 171 | 0.047 | 0.027 | 0.813 |
5 | 51 | 0.53 | 48 | 0.563 | 5.77 | 171 | 0.064 | 0.037 | 1.104 |
6 | 36 | 0.27 | 48 | 0.202 | 5.77 | 171 | 0.032 | 0.019 | 0.562 |
8 | 365 | 0.71 | 48 | 5.399 | 5.77 | 171 | 0.085 | 0.050 | 1.479 |
9 | 328 | 0.44 | 48 | 3.007 | 5.77 | 171 | 0.053 | 0.031 | 0.917 |
Σb | --- | --- | --- | --- | --- | --- | --- | 0.165 | 4.875 |
Σa+b | --- | --- | --- | --- | --- | --- | --- | 0.287 | 6.934 |
L.P.L.S. = (n x R.P.L.S.)/Sa. % L.P.L.S. = (L.P.L.S./P.) x 100. R.L.S. = (n x ks)/Sa.. I.G. = (P. x R.L.S.) x n. S.S.. % I.G. = (I.G. x 100)/P.. % R.P.L.S. = (I.G. x 100)/L.P. Ks of S.S. are separated by L.S.
La fuente de solución (F.S.) F.S.3 (% I.I. = 100) redujo la pérdida por F.P.1; y F.S.5 (% II = 54.18), F.S.6 (% II = 19.81), F.S.8 (% II = 11.75), F.S.4 (% II = 7.69) y F.S.9 (% II = 6.58) el de F.P.7 en la producción del sistema. Las posibles fuentes de solución F.S.1, F.S.2 y F.S.7 mostraron % I.I.
= 0,00% debido al efecto no significativo en la reducción de pérdidas
por importantes F.P. o debido a la reducción de la F.P. la cual no se
correlacionó con la pérdida de producción en el sistema. La F.S.3 redujo la pérdida de producción (2.06%) por F.P.1 aumentando la ganancia de ingresos (0.12%) en la producción del sistema. La pérdida de producción por F.P.7 se redujo por la F.S.8 (1.48%), F.S.5 (1.10%), F.S.9 (0.92%), F.S.4 (0.81%) y F.S.5 (0.56%), totalizando 4.88%. La reducción de pérdidas por L.S.7 debido a los factores de solución F.S.8, F.S.5, F.S.4, F.S.9 y F.S.6,
aumentando la ganancia de ingresos (0.05, 0.04, 0.03, 0.03 y 0.02%,
respectivamente), totalizando 0.17 %. La reducción total en la pérdida
de producción debido a las fuentes de pérdida (F.P.1 y F.P.7)
fue del 6,93%, con un aumento en la productividad del sistema del 0,29%
debido a las fuentes de solución citadas anteriormente (tablas 2, 3).
El índice de porcentaje de importancia (% I.I.)
fue efectivo para identificar las fuentes de pérdida en el sistema (
ej., reducción en la producción), siendo más simple que una Tabla de
Vida del Cultivo (Da Silva et al.2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.), pero este índice no reemplaza una Tabla de Vida del Cultivo. El uso del % I.I.
es para casos (por ejemplo, sistema natural, cerrado) en los que no es
posible evaluar todas las flores y frutos de todas las plantas en la
parcela útil experimental, identificando los factores de pérdida de
plantas, como lo hecho en la Tabla de Vida del Cultivo (Da Silva et al. 2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.).
Los parámetros de la tabla de vida proporcionan información confiable,
ej. potencial reproductivo y factores de mortalidad de las especies (Henderson y Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630.). Los datos de producción de frutos y artrópodos (hojas, flores y frutos), utilizados para probar el % I.I., se obtuvieron en árboles de Caryocar brasiliense Camb. (Caryocaraceae), con más de 3 m de altura, al azar, en áreas de cerrado, en tres años, mensualmente (Leite et al.2006Leite, G.L.D., Veloso, R.V.S., Zanuncio, J.C., Fernandes, L.A. & Almeida, C.I.M. 2006. "Phenology of Caryocar brasiliense in the Brazilian Cerrado region"". Forest Ecology and Management, 236(2-3): 286-294, ISSN: 0378-1127, DOI: https://doi.org/10.1016/j.foreco.2006.09.013., 2012Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Almeida, C.I.M., Ferreira,
P.S.F., Fernandes, G.W. & Soares, M.A. 2012. "Habitat complexity and
Caryocar brasiliense herbivores (Insecta; Arachnida: Araneae) ". Florida Entomologist, 95(4): 819-830, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.095.0402., 2016Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Alonso, J., Ferreira, P.S.F.,
Almeida, C.I.M., Fernandes, G.W. & Serrão, J.E. 2016. "Diversity of
Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado". Florida Entomologist, 99(2): 239-247, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.099.0213., 2017Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Azevedo, A.M., Silva, J.L.,
Wilcken, C.F. & Soares, M.A. 2017. ""Architectural diversity and
galling insects on Caryocar brasiliense trees". Scientific Reports, 7(1): 1-7, ISSN: 2045-2322, DOI: https://doi.org/10.1038/s41598-017-16954-6.). Se evaluaron flores y frutos en algunas ramas de árboles y luego se estimó el total por árbol (Leite et al. 2006Leite, G.L.D., Veloso, R.V.S., Zanuncio, J.C., Fernandes, L.A. & Almeida, C.I.M. 2006. "Phenology of Caryocar brasiliense in the Brazilian Cerrado region"". Forest Ecology and Management, 236(2-3): 286-294, ISSN: 0378-1127, DOI: https://doi.org/10.1016/j.foreco.2006.09.013.), por lo que el uso de este índice es para los casos en los que no es posible usar la Tabla de Vida del Cultivo.
El % I.I.
fue, también, efectivo en la identificación de fuentes de solución en
el sistema (ej., aumentando la producción), similar a una Tabla de Vida
Ecológica (Henderson y Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630.). El % I.I. no reemplaza una Tabla de Vida Ecológica (Henderson y Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630.). El uso del % I.I.
es para casos (ej., sistema natural, cerrado) en los que no es capaz de
marcar y monitorear al animal (ej., insectos plaga), identificando la
causa de su mortalidad, como se hizo con la Tabla de Vida Ecológica (Henderson y Southwood 2016Henderson,
P.A & Southwood, T.E.R. 2016. Ecological methods. Ed. John Wiley
& Sons. Oxford, United Kingdom, p. 656, ISBN: 2015033630.)
. La cría de plagas de insectos, estudios de campo detallados, tiempo e
investigadores capacitados para identificar y cuantificar el control de
los factores naturales diariamente hasta que se complete el ciclo de
vida de la plaga de insectos, son los pasos principales para determinar
los parámetros de una Tabla de Vida de insectos plaga (Da Silva et al.2017Da
Silva, E.M., Da Silva, R.S., Rodrigues-Silva, N., Milagres, C.C.,
Bacci, L. & Picanço, M.C. 2017. "Assessment of the natural control
of Neoleucinodes elegantalis in tomato cultivation using ecological life tables". Biocontrol Science and Technology, 27(4): 1-14, ISSN: 0958-3157, DOI: https://doi.org/10.1080/09583157.2017.1319911.). La evaluación de insectos herbívoros y sus enemigos naturales, incluidas las arañas, en árboles de C. brasiliense, no fue individualmente durante su vida (Leite et al.2012Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Almeida, C.I.M., Ferreira,
P.S.F., Fernandes, G.W. & Soares, M.A. 2012. "Habitat complexity and
Caryocar brasiliense herbivores (Insecta; Arachnida: Araneae) ". Florida Entomologist, 95(4): 819-830, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.095.0402., 2016Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Alonso, J., Ferreira, P.S.F.,
Almeida, C.I.M., Fernandes, G.W. & Serrão, J.E. 2016. "Diversity of
Hemiptera (Arthropoda: Insecta) and their natural enemies on Caryocar brasiliense (Malpighiales: Caryocaraceae) trees in the Brazilian Cerrado". Florida Entomologist, 99(2): 239-247, ISSN: 1938-5102, DOI: https://doi.org/10.1653/024.099.0213., 2017Leite,
G.L.D., Veloso, R.V.S., Zanuncio, J.C., Azevedo, A.M., Silva, J.L.,
Wilcken, C.F. & Soares, M.A. 2017. ""Architectural diversity and
galling insects on Caryocar brasiliense trees". Scientific Reports, 7(1): 1-7, ISSN: 2045-2322, DOI: https://doi.org/10.1038/s41598-017-16954-6.),
ni sería posible debido a la altura de estas plantas en zonas cerradas.
Pero, con la aplicación de este índice, fue posible determinar los
efectos de estos enemigos naturales sobre los herbívoros y la producción
de frutos por árbol en el sistema natural.
El % I.I. separó las fuentes de pérdida ( ej., F.P.1 = 85,06%) en la reducción de la producción
(ej., 5,89%) y las fuentes de solución (ej., F.S.5 = 54,18%) con la ganancia total de ingresos
(ej., 0,29%) en el sistema, con posibilidad de calcular, monetariamente, estas pérdidas o efectividad de las soluciones. El % I.I.
puede ayudar, por ejemplo, a determinar qué plagas, ej. mamíferos
exóticos, insectos, enfermedades de plantas y malezas, causan los
mayores problemas en la producción de plantas y los mejores métodos de
control (ej., control biológico) son más dañinos o efectivos en el
sistema (ej., cultivos) y cuánto dinero se pierde o se ahorra. Aquí se
muestra el porcentaje del I.I. ,es un índice para detectar las
fuentes clave de pérdida o solución en un sistema, haciendo posible la
obtención de pérdidas y ganancias en algunas áreas del conocimiento.